Excess Volumes of Mixtures of Oxolane, Oxane, 1,3-Dioxolane, and 1,4-Dioxane with *n*-Alkanes at 298.15, 308.15, and 318.15 K

Americo Inglese*

Istituto di Chimica Fisica, Università di Bari, Bari, Italy

Jean-Pierre E. Groller

Laboratolre de Thermodynamique et Cinétique Chimique, Université de Clermont 2, F-63170 Aubière, France

Emmerich Wilhelm

Institut für Physikalische Chemie, Universität Wien, A-1090 Wien, Austria

Molar excess volumes V^E have been measured as a function of mole fraction at 298.15, 308.15, and 318.15 K for binary liquid systems of the type cyclic ether (x_1) + n-alkane by using pycnometry and, in three cases, vibrating-tube densimetry (VTD). The cyclic ethers were oxolane (tetrahydrofuran, C4H8O), oxane (tetrahydropyran, $C_5H_{10}O$), 1,3-dioxolane (1,3- $C_3H_8O_2$), and 1,4-dioxane $(1,4-C_4H_8O_2)$; the *n*-alkanes were *n*-decane and *n*-tetradecane. V^{E} for 1,4-dioxane + *n*-heptane was determined for 298.15 K only. All excess volumes are positive. $V^{E}(x_{1} = 0.5)$ for any mixture containing an m_c-membered cyclic diether is considerably larger than for the corresponding mixture (i.e., with the same n-alkane) involving an m_c-membered cyclic monoether. For a given ether, V^E shows a pronounced increase with increasing chain length of the n-alkane.

Introduction

Continued interest in the thermodynamics of binary liquid mixtures containing n-alkanes makes it desirable to study systematically the influence of chain length n of the n-alkane $n - C_n H_{2n+2}$ and of chemical structure of the other component upon excess thermodynamic quantities. Such investigations have recently vielded quite unexpected results (1, 2), which were used subsequently to reexamine and augment existing theories of liquid mixtures. For instance, mixtures of n-alkanes with more or less globular molecules, such as tetrachloromethane or cyclohexane, have been discussed by Patterson et al. in terms of destruction of partial order (correlation of molecular motion) assumed to exist in pure liquid n-alkanes of sufficient chain length and at temperatures well below the critical (3-9). Heintz and Lichtenthaler have introduced an extended version of the Flory theory (10, 11), and quite recently Kohler et al. (12, 13) presented a careful study of the volumetric behavior of mixtures of the type cycloalkane + n-alkane and its relation to packing effects. Our own activities have focused upon systematic determination of excess enthalpy and excess heat capacity at constant pressure of mixtures of nalkanes with rather large, sterically anisotropic substances of medium polarity, such as halobenzenes (14-17), 1-chloronaphthalene (18), and cycloethers (19). For a substantial number of these mixtures molar excess volumes were also determined. However, the cubic coefficient of expansion, though indispensable for the indirect evaluation of either isothermal compressibility or heat capacity at constant volume via ultrasonic speed measurements (see, for example, ref 20 and 21), has been measured only for a few systems in the series 1,2,4-trichlorobenzene + n-alkane (22, 23). As a contribution toward a more comprehensive thermodynamic description along these lines we report here excess volumes of mixtures

of oxolane (tetrahydrofuran, C₄H₈O), oxane (tetrahydropyran, C₅H₁₀O), 1,3-dioxolane (1,3-C₃H₆O₂), and 1,4-dioxane (1,4-C₄-H₈O₂) each with *n*-decane and *n*-tetradecane at 298.15, 308.15, and 318.15 K. In addition, results on 1,4-dioxane + *n*-heptane at 298.15 K are presented.

Experimental Section

Materials. Oxolane (with purity >99.5 mol %) and 1,4-dioxane (>99.5 mol %) were from C. Erba; oxane (purum, >98 mol %), 1,3-dioxolane (purum, >99 mol %), *n*-heptane (puriss., >99.5 mol %), *n*-decane (purum, >99 mol %), and *n*-tetradecane (puriss., >99 mol %) were from Fluka. The cyclic ethers were fractionally distilled over sodium wire and stored in the dark (*19*), and the *n*-alkanes were used as received. Prior to actual measurement, all liquids were carefully dried with molecular sieve (Union Carbide Type 4A, beads, from Fluka).

Measurements. Densities ρ were measured either pycnometrically or with a vibrating-tube densimeter. The pycnometers were of the single-arm type with volumes of about 20 cm³ and internal diameters of the capillarles of about 1 mm. They were calibrated at 298.15, 398.15, and 318.15 K with doubly distilled water (24) showing a resistivity greater than 10⁴ Ω m. The temperature of the thermostat was maintained constant to within ±0.005 K at the desired value and checked by means of a calibrated platinum resistance thermometer. The vibrating-tube densimeter (from Sodev, Model 02D) was operated under flow conditions (21, 25). It was calibrated with distilled water and dry nitrogen at atmospheric pressure. Temperature in that thermostat was maintained constant to within ±0.003 K. Binary mixtures were prepared by mass. The possible error in the mole fractions is estimated to be less than 10⁻⁴.

From the densities, the molar excess volumes V^{E} were obtained according to

$$V^{\rm E} = V_{\rm m} - (x_1 V_1 + x_2 V_2)$$

+ $x_1 M_1 (\rho_{\rm m}^{-1} - \rho_1^{-1}) + x_2 M_2 (\rho_{\rm m}^{-1} - \rho_2^{-1})$ (1)

Here, V_i , M_i , ρ_i , and x_i denote respectively the molar volume, the molar mass, the density, and the mole fraction of either cycloether (i = 1) or *n*-alkane (i = 2); quantities with subscript m refer to the mixture. We estimate the imprecision of the pycnometric V^E to be about ± 0.008 cm³ mol⁻¹, which value is supported (with very few exceptions) by the standard deviations (see below).

Results and Discussion

Densities of the pure liquids are listed in Table I. In general, agreement with literature data (26-35) is satisfactory. Molar excess volumes as determined via eq 1 are presented in Tables II and III. The latter contains results by vibrating-tube densimetry (VTD), obtained in two separate series of measure-

Table I. Experimental Densities ρ of Pure Liquids at 298.15, 308.15, and 318.15 K, and Comparison with Selected Literature Data at 298.15 K

<u>-,</u>		ρ/	(kg m ⁻³)			
						
liquid	at 298.15 K	at 308.15 K	at 318.15 K	lit. at 298.15 K		
n-heptane	679.48		- <u></u>	679.51 (26), 679.43 (27)		
<i>n</i> -decane	726.72	719.15	711.41	726.25 (26), 726.37 (28)		
n-tetradecane	759.60	752.53	745.52	759.30 (29), 759.18 (28)		
oxolane	882.69	872.02	860.81	882.3 (30), 881.97 (31)		
oxane	879.16	869.13	858.95	879.22, ^a 879.1 (<i>33</i>)		
1,3-dioxolane	1058.65	1046.20	1033.64	1059.1 (<i>33</i>), 1053.8 ^b		
1,4-dioxane	1027.92	1016.59	1005.26	1027.97 (<i>26</i>), 1028.21 (<i>35</i>)		

^a Interpolated value from ref 32. ^b Extrapolated value from ref 34.

ments several months apart. At each temperature, the excess volumes were fitted with a smoothing polynomial

$$V^{\rm E}/({\rm cm}^3 {\rm mol}^{-1}) = x_1 x_2 \sum_{i=0}^{k-1} A_i (x_1 - x_2)^i$$
 (2)

by the method of unweighted least squares. The *k* coefficients A_i and the standard deviations σ are given in Table IV.

For 1,4-dioxane + *n*-decane, and + *n*-tetradecane, excess volumes were determined at 298.15 K by pycnometry as well as vibrating-tube densimetry. Agreement between these two techniques is reasonable in both cases as evidenced by Figure 1, though for mixtures rich in 1,4-dioxane (that is to say, for $x_1 > 0.5$) the pycnometric data are slightly smaller than the VTD results.

Excess volumes of 1,4-dioxane + *n*-heptane were measured by Deshpande and Oswal (DO) (*36*) at 303.15 K. At $x_1 = 0.5$ they reported $V^E = 0.749 \text{ cm}^3 \text{ mol}^{-1}$. Adjustment of their data to 298.15 K is possible only by estimating $\partial V^E/\partial T$ through analogy with the temperature dependence of V^E for the systems 1,4-dioxane + *n*-decane, and 1,4-dioxane + *n*-tetradecane. At equimolar composition, a reasonable estimate (see below) is $\partial V^E/\partial T = 4.1 \times 10^{-3} \text{ cm}^3 \text{ K}^{-1} \text{ mol}^{-1}$, which value

Table II. Molar Excess Volumes V^E for Binary Liquid Mixtures of Cyclic Ether $(x_1) + n$ -Alkane (x_2) at 298.15, 308.15, and 318.15 K Obtained via Pycnometry

	$V^{\mathbf{E}}/(\mathrm{cm}^3 \mathrm{mol}^{-1})$			$V^{\mathbf{E}}/(\mathbf{cm^3 mol^{-1}})$				
<i>x</i> ₁	at 298.15 K	at 308.15 K	at 318.15 K	x 1	at 298.15 K	at 308.15 K	at 318.15 K	
			x, C, H, O +	$x_n - C_n H_n$				
0.2384	0.352.	0.375.	0.396	0.7408	0.473.	0.505.	0.534	
0.3371	0.473	0.495	0.513	0.8147	0.400.	0.421	0.449	
0.5453	0.560	0.587	0.615	0.8615	0.318	0.342	0.362	
0.7017	0.508	0.538	0.566	0.9335	0.170	0.190	0.196	
0.7017	0.0006	0.0002	0.0002	0.7555	0.1704	0.1703	0.1704	
			$x_1 C_4 H_8 O + $	$x_2 n - C_{14} H_{30}$				
0.2454	0.564 ₈	0.576 ₃	0.594,	0.5633	0.730 ₈	0.749,	0.7824	
0.3755	0.6962	0.715,	0.760 ₈	0.7155	0.650 ₆	0.673 ₈	0.6991	
0.4822	0.740 ₆	0.7602	0.791,	0.8519	0.4614	0.5072	0.521	
			х С Н , O +	r n-C H				
0 2067	0.256	0.260	0 264	0 7624	0 3 9 0	0.400	0 408	
0.3320	0.377	0.2003	0.387	0.8032	0.335	0.348	0.355	
0.3320	0.175	0.301,	0.307,	0.0052	0.3532	0.3702	0.3334	
0.4909	0.473,	0.479	0.4033	0.0301	0.2006	0.271_8	0.2031	
0.0270	0.4030	0.490	0.3031	0.9039	0.1090	0.1703	0.1004	
			$x_1 C_5 H_{10} O +$	$x_2 n - C_{14} H_{30}$				
0.2291	0.571	0.5814	0.593,	0.7158	0.649	0.6558	0.661,	
0.3361	0.700	0.711,	0.724	0.7631	0.586	0.593	0.600	
0.4898	0.776,	0.790 ₇	0.806	0.8205	0.484	0.490,	0.496	
0.5859	0.756	0.764	0.7753		·	Ū	-	
			т 13-С H O	± r n-C H				
0.2100	0 747	0.701	$1, 5 - C_3 \Pi_6 O_2$	$-\pi x_2 n^{-}C_{10}\Pi_{22}$	0 736	0 000	0 971	
0.2109	0.7473	0.791	1.001	0.7701	0.750	0.0001	0.0718	
0.2010	0.099 ₈	0.9492	1.0018	0.0429	0.3088	0.0198	0.000,	
0.4200	1.0753	1.150,	1.2248	0.8822	0.432,	0.473_{1}	0.5196	
0.5329	1.0876	1.1001	1.2534	0.9291	0.2502	0.2/84	0.2982	
0.6532	0.977	1.0573	1.1518					
			$x_1 1, 3-C_3H_6O_2$	$+ x_2 n - C_{14} H_{30}$				
0.2321	0.920	0.958,	0.997	0.5766	1.370	1.463。	1.569,	
0.3375	1.212	1.2654	1.318,	0.6688	1.257	1.353	1.466,	
0.4381	1.384	1.455	1.512	0.8220	0.891	0.972.	1.051	
0.5255	1.429	1.500	1.581		1	0	0	
	-	-	× 14.0 U O					
0 1927	0.710	0 763	$1, 4 - C_4 \Pi_8 O_2$	$+ x_2 n C_{10} n_{22}$	0.047	1 00 2	1.045	
0.1627	0.7108	1.010	0.0112	0.0910	0.94/2	1.0028	1.045,	
0.2044	1.004	1.010_{2}	1.0003	0.7090	0.7314	0.7697	0.0276	
0.4001	1.0944	1,1418	1.1904	0.0093	0.4442	0.4077	0.469	
0.4903	1.124,	1.1//6	1.237	0.9485	0.209	0.2264	0.237_{4}	
0.6229	1.045	1.09/0	1.1516					
			$x_1 1, 4 - C_4 H_8 O_2$	$+ x_2 n - C_{14} H_{30}$				
0.1847	0.763	0.7914	0.834	0.7851	1.067,	1.116.		
0.2777	1.078,	1.128,	1.181,	0.8544	0.830	0.872	0.9222	
0.4513	1.409	1.467,	1.537	0.9232	0.505	0.5253	0.565	
0.6033	1.403,	1.4572	1.554,	0.9443	0.379	0.393	0.416	
0.7249	1.218,	1.287	1.354		-	-	•	

Table III. Molar Excess Volumes V^{E} for Binary Mixtures of 1,4-Dioxane $(x_1) + n$ -Alkane (x_2) at 298.15 K, Obtained via Vibrating-Tube Densimetry

	$V^{\mathbf{E}}/$		$V^{\mathbf{E}}$				
<i>x</i> 1	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	<i>x</i> 1	$(cm^3 mol^{-1})$				
$x_1 1, 4 - C_4 H_8 O_2 + x_2 n - C_7 H_{16}$							
0.0410	0.1534	0.5335	0.706_{7}				
0.0927	0.315,	0.5713	0.684 ₀				
0.1374	0.3922	0.6126	0.653,				
0.1971	0.552	0.6753	0.587,				
0.2599	0.637	0.7539	0.4827				
0.3368	0.710	0.8202	0.378				
0.3724	0.726,	0.8361	0.351				
0.4136	0.733	0.9108	0.201_{7}				
0.4761	0.731	0.9466	0.126				
0.5132	0.717_{6}						
	$x_1 1, 4 - C_4 H_8 O_7$	$+ x_2 n - C_{10} H_2$	°				
0.0686	0.297	0.5464	1.1294				
0.0789	0.337	0.6159	1.0832				
0.1425	0.5664	0.6731	1.016				
0.1874	0.701	0.7165	0.944,				
0.2659	0.902	0.7602	0.856				
0.2873	0.9374	0.8072	0.7433				
0.3680	1.070,	0.8457	0.631 ₆				
0.3897	1.086,	0.8801	0.5194				
0.4345	1.120 ₈	0.9111	0.4033				
0.5181	1.1452	0.9450	0.2594				
0.5290	1.144_{7}	0.9773	0.104,				
	$x_1 1, 4 - C_4 H_8 O_2$	$+ x_2 n - C_{14} H_3$	0				
0.1251	0.567 ₈	0.8553	0.8792				
0.2247	0.9214	0.8925	0.712,				
0.3480	1.241,	0.9062	0.6436				
0.3993	1.334 2	0.9167	0.584				
0.5481	1.441,	0.9415	0.4434				
0.6621	1.3723	0.9617	0.307 ₈				
0.6705	1.3604	0.9719	0.234,				
0.8206	1.002	0.9747	0.211-				

Figure 1. Molar excess volumes V^E of binary liquid mixtures of 1,4dioxane + n-decane (O, \bullet) and 1,4-dioxane + n-tetradecane (Δ , \blacktriangle) at 298.15 K, plotted against mole fraction x_1 of the cyclic ether. Open symbols denote experimental results obtained pycnometrically; filled symbols are results obtained by vibrating-tube densimetry. Curves correspond to least-squares representations of VTD data by eq 2 with parameters from Table IV.

yields $V^{E}(DO, 298.15 \text{ K}) = 0.728 \text{ cm}^{3} \text{ mol}^{-1}$, in good agreement with our result $V^{E} = 0.725 \text{ cm}^{3} \text{ mol}^{-1}$. No other results could be found for comparison.

At $x_1 = 0.5$, V^{E} is considerably larger for any mixture of an $m_{\rm c}$ -membered cyclic diether ($m_{\rm c}$ = 5 or 6) with an *n*-alkane than for the corresponding mixture involving an m_c -membered cyclic monoether, whereas the ring size itself influences VE only weakly. For instance, at 298.15 K $V^{E}(x_{1} = 0.5) = 1.410 \text{ cm}^{3}$

Table IV. Coeffcients A_i and Standard Deviations $\sigma(V^E)$ for Representation of Molar Excess Volumes at 298.15, 308.15, and 318.15 K by Eq 2

						$\sigma(V^{\mathbf{E}})/$
	T/K	A_{0}	A_{1}	A_2	A_3	mol ⁻¹)
		x, C,	$H_{0}O + x_{3} n$	1-C. H.,		
	298.15	2.220	0.510	0.134		0.008
	308.1 5	2.324	0.546	0.266		0.006
	318.15	2.428	0.596	0.339		0.005
		$x_1 C_4$	$H_8O + x_2 n$	$1 - C_{14} H_{30}$		
	298.15	2.955	0.075	0.840	0.664	0.003
	308.15	3.028	-0.006	0.998	1.406	0.005
	318.15	3.153	0.039	0.938	1.350	0.006
		$x_1 C_5 H$	$H_{10}O + x_2$	$n - C_{10} H_{22}$		
	298.15	1.922	0.682	-0.203	-0.587	0.003
	308.15	1.945	0.751	0.120	-0.670	0.004
	318.15	1.969	0.723	-0.073	-0.507	0.004
		$x_1 C_{5} H$	$H_{10}O + x_2 $	<i>n-</i> C ₁₄ H ₃₀		
	298.15	3.102	0.011	0.458		0.002
	308.15	3.149	-0.006	0.454		0.003
	318.15	3.201	-0.035	0.451		0.004
		x ₁ 1,3-C	$_{3}H_{6}O_{2} + x$	2 n-C10H22		0.011
	298.15	4.383	-0.198	-0.098		0.011
	308.15	4.692	-0.080	-0.069		0.011
	516.15	5.050	0.079			0.015
	200 15	$x_1 1,3-C$	$_{3}H_{6}O_{2} + x$	$^{\circ}_{2}$ <i>n</i> -C ₁₄ H ₃₀	2 01 2	0.017
	298.15	5.042	0.125	-0.470	1 94 3	0.017
	318.15	6.272	1.228	-0.200	1.945	0.011
		v 140		C U		
VTD ^a	298.15	2.898	-0.707	0.266		0.008
	298.15	$x_1 1,4-0$ 4 4 9 6	$_{4}H_{8}O_{2} + x$ -0.239	$\binom{n}{2} \binom{n}{2} \binom{n}$		0.008
	308.15	4.700	-0.185	0.520	-0.352	0.007
	318.15	4.924	-0.206	0.692	-0.468	0.007
VTD ^a	298.15	4.567	0.109	0.343		0.006
		x. 1.4-C	$H_{v}O_{2} + x$	<i>n</i> -C, H		
	298.15	5.741	0.528	0.046	1.458	0.002
	308.15	5.982	0.616	0.106	1.414	0.007
•	318.15	6.299	0.784	0.188	1.298	0.006
VTD ^a	298.15	5.705	0.868	0.895	1.051	0.008

^a VTD signifies vibrating-tube densimetry.

Table V. Interpolated Values of $\partial V^{E}/\partial T$ at $x_1 = 0.5$, Evaluated over the Experimental Temperature Range

system	$ \begin{array}{c} 10^{3} \times \\ [\partial V^{\mathbf{E}}(x_{1} = 0.5) / \\ \partial T] / \\ (\mathrm{cm}^{3} \mathrm{K}^{-1} \mathrm{mol}^{-1}) \end{array} $
$x_1 C_4 H_8 O + x_2 n - C_{10} H_{22}$	2.6
$+ x_2 n - C_{14} H_{30}$	2.5
$x_1 C_5 H_{10} O + x_2 n - C_{10} H_{22}$	0.6
$+ x_2 n - C_{14} H_{30}$	1.2
$x_1 1, 3-C_3H_6O_2 + x_2 n-C_{10}H_{22}$	8.3
$+x, n-C_{14}H_{30}$	7.9
$x_1 1, 4 - C_a H_B O_2 + x_2 n - C_{10} H_{22}$	5.4
$+ x_2 n - C_{14} H_{30}$	7.0

 mol^{-1} for 1,3-C₃H₆O₂ + n-C₁₄H₃₀ ($m_c = 5$) as compared to $V^{E}(x_1 = 0.5) = 0.737$ cm³ mol⁻¹ for C₄H₈O + n-C₁₄H₃₀ ($m_c = 5$), and $V^{E}(x_1 = 0.5) = 0.754$ cm³ mol⁻¹ for C₅H₁₀O + $n-C_{14}H_{30}$ ($m_c = 6$). For any given ether, V^{E} shows a pronounced increase with increasing n as observed with other cyclic compounds in ref 13, 17, and 18.

Table V contains (interpolated) values of $\partial V^{E}/\partial T$ for $x_{1} =$ 0.5, evaluated over the experimental temperature range through linear smoothing of the respective Redlich-Kister coefficients A_0 of Table IV. We note that (a) $\partial V^E / \partial T$ is larger for any mixture containing an m_c-membered cyclic diether as com-

pared to the corresponding mixture of an m_c-membered cyclic monoether with the same *n*-alkane and (b) $\partial V^{E}/\partial T$ increases with increasing chain length of the *n*-alkane for the series with six-membered cyclic ethers, whereas for the series containing five-membered cyclic ethers $\partial V^{E}/\partial T$ decreases slightly with increasing n.

A detailed discussion of all our results on mixtures of cycloethers with *n*-alkanes, including data reported in ref 19, is deferred until heat capacities and ultrasonic speeds are available.

Registry No. Oxolane, 109-99-9; oxane, 142-68-7; 1,3-dioxolane, 646-06-0; 1,4-dioxane, 123-91-1; n-heptane, 142-82-5; n-decane, 124-18-5: n-tetradecane, 629-59-4.

Literature Cited

- (1) Patterson, D. Pure Appl. Chem. 1978, 47, 305.
- (2) Wilhelm, E. Prog. Chem. Eng. A, Fundam. Chem. Eng. 1980, 18, 21.
- Tancrède, P.; Bothorel, P.; de St. Romain, P.; Patterson, D. J. Chem. Soc., Faraday Trans. 2 1977, 73, 15.
 Tancrède, P.; Patterson, D.; Bothorel, P. J. Chem. Soc., Faraday
- Trans. 2 1977, 73, 29.
- Barbe, M.; Patterson, D. J. Phys. Chem. 1978, 82, 40
- Bhattacharyya, S. N.; Patterson, D. *J. Phys. Chem.* **1979**, *83*, 2979. de St. Romain, P.; Van, H. T.; Patterson, D. *J. Chem. Soc. Faraday Trans. 1* **1979**, *75*, 1700. (6) (7)
- (8) de St. Romain, P.; Van, H. T.; Patterson, D. J. Chem. Soc., Faraday Trans. 1 1979, 75, 1708.
- (9) Kronberg, B.; Patterson, D. J. Chem. Soc., Faraday Trans. 1 1981, 77. 1223.
- (10) Heintz, A.; Lichtenthaler, R. N. Ber. Bunsenges. Phys. Chem. 1977, 81, 921.
- (11) Heintz, A.; Lichtenthaler, R. N. Ber. Bunsenges. Phys. Chem. 1980,
- (11) But and a second second
- (13) Siddiqi, M. A.; Kohier, F. Ber. Bunsenges. Phys. Chem. 1981, 85, 17. (14) Wilheim, E. Ber. Bunsenges. Phys. Chem. 1977, 81, 1150. See also: Wilhelm, E. In "Extended Abstracts of the Main Lectures, 6th International Conference on Thermodynamics, Merseburg, G.D.R., Aug 26-29, 1980"; Techn. Hochschule Leuna-Merseburg: Merseburg, 1980; pp 8-10.

- (15) Wilhelm, E.; Inglese, A.; Grolier, J.-P. E.; Kehiaian, H. V. Ber. Bunsenges. Phys. Chem. 1978, 82, 384
- (16) Wilhelm, E.; Inglese, A.; Grolier, J.-P. E.; Kehiaian, H. V. Thermochim. Acta 1979, 31, 85.
- (17) Wilhelm, E.; Inglese, A.; Quint, J. R.; Grolier, J.-P. E. J. Chem. Thermodyn. 1982, 14, 303. (18) Grolier, J.-P. E.; Inglese, A.; Roux, A. H.; Wilhelm, E. *Ber. Bunsenges*.
- (19) Inglese, A.; Wilhelm, E.; Bor. Bursenges.
 (19) Inglese, A.; Wilhelm, E.; Groller, J.-P. E.; Kehialan, H. V. J. Chem.
 Thermodyn. 1980, 12, 217.
- (20) Wilhelm, E.; Zettler, M.; Sackmann, H. Ber. Bunsenges. Phys. Chem.
- 1974, 78, 795.
- (21) Groller, J.-P. E.; Wilhelm, E.; Hamedi, M. H. Ber. Bunsenges. Phys. Chem. 1978, 82, 1282.
 (22) Wilhelm, E.; Rott, E.; Kohler, F. "Proceedings of the 1st International
- Conference on Calorimetry and Thermodynamics, Warsaw, Poland, August 31-September 4, 1969"; PWN Polish Scientific Publishers: Warsaw, 1970; pp 767-71.
- Atrops, H.; Kalali, H. E.; Kohler, F. Ber. Bunsenges. Phys. Chem. (23)
- (23) Atrops, i.i., summing 1982, 86, 26.
 (24) Kell, G. S. J. Chem. Eng. Data 1975, 20, 97.
 (25) Wilhelm. E.; Grolier, J.-P. E.; Karbalai Ghassemi, M. H. Monatsh.
- Riddick, J. A.; Bunger, W. B. "Techniques of Chemistry", 3rd ed.; Weissberg, A., Ed.; Wiley-Interscience: New York, 1970; Vol. 2. Fortier, J.-L.; Benson, G. C.; Picker, P. J. Chem. Thermodn. **1978**, 8, (26)
- (27)289.
- (28) Aicart, E.; Tardajos, G.; Diaz Peña, M. J. Chem. Eng. Data 1981, 26, 22
- "Selected Values of Physical and Thermodynamic Properties of Hydro-(29)carbons and Related Compounds", American Petroleum Institute Re-search Project 44; Carnegie Press: Pittsburgh, PA, 1953.
- Murakami, S.; Koyama, M.; Fujishiro, R. Bull. Chem. Soc. Jpn. 1988, (30) 41, 1540.
- (31) Kiyohara, O.; D'Arcy, P. J.; Benson, G. C. Can. J. Chem. 179, 57, 1006.
- "Landolt-Börnstein, Zahlenwerte und Funktionen"; 2 Band, 1 Teil, 6 Auflage; Springer: West Berlin, 1971. (32)
- (33) Groller, J.-P. E.; Inglese, A.; Wilhelm, E. J. Chem. Eng. Data 1982, *27*, 333.
- "Beilstein, Handbuch der Organischen Chemie"; (34) 19 Band, 1 Ergänzungswerk, 4 Auflage; Springer: West Berlin, 1934; p 609, (35) Anand, S. C.; Grolier, J.-P. E.; Kiyohara, O.; Benson, G. C. *Car. J.*
- Chem. 1973, 51, 4140.
- (36) Deshpande, D. D.; Oswal, S. L. J. Chem. Thermodyn. 1975, 7, 155.

Received for review February 23, 1982. Accepted August 16, 1982.

Electrical Conductivity of Concentrated Lithium Bromide Aqueous Solutions

Ilana Fried* and Monica Segal

Tadiran, Israel Electronics Industries, Tel Aviv, Israel

The electrical conductivity of aqueous lithium bromide solutions was measured at the concentrations of 40-63 wt % of LiBr (6.5-13 M) and temperatures of 15-80 °C. The results are reproducible to within $\pm 0.4 - 1.5\%$ (3) mmho) and are suitable for analytical determination of LiBr. The absolute accuracy of analytical determination using this method is $\pm 0.3\%$ LiBr in concentrations greater than 50% and $\pm 0.7\%$ in concentrations of 40–50% LiBr. Data compare favorably with previous publications.

Concentrated lithium bromide solutions are used in absorption air conditioning machines. These are used as central units to

control the temperature and humidity in buildings where there is waste steam, or in places where the vibrations created by centrifugal central air conditioners are unacceptable (1, 2). Absorption air conditioners are also important in solar energy utilization (3). Thus, the determination of LiBr in concentrated solution is of practical value.

There are two known methods for the determination of LiBr: by titration with AgNO₃ (4) and by measurement of the density of the solution (5). Both methods give accurate results and correspond to each other (6). However, another analytical method may be derived, one that does not require expensive reagents, skilled technical personnel, or large volumes of sample. Such a method could be measurement of conductivity of the LiBr solution. Moreover, conductivity values could be measured inside the machine, without having to extract samples.

Address correspondence to this author at the following address: Interdisciplinary Center for Technological Analysis and Forecasting, Tel Aviv Univer-sity, Ramat Aviv, Tel Aviv 69978, Israel.